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The purpose of this work is to present an inversion algorithm for

backscattered (Wstacked 4  seismic data which will reconstruct the velocity

profile in realistic earth conditions. The basic approach follows that of

the original Cohen and Bleistein paper 4 in that high frequency

asymptotics and perturbation methods are used. However, in the original

paper the perturbation was reLative to a constant reference speed, whereas

the current work uses a reference speed which may vary with depth. This

greatly enhances the validity of the perturbation assumption and hence the

inversion results. On the other hand, the new algorithm enjoys the same

economies and stability properties of the original algorithm, making it very

competitive with current migration schemes.

Four major assumptions are made: (M) the acoustic wave equation is an

adequate model, (i) stacked data has amplitude information worth preserving

fairly accurately, (Uii) the actual reflectivity coefficients can be

adequately modeled as perturbations from a continuous reference velocity

which depends only on the depth variable, and ( the subsurface can be

adequately modeled as a series of layers with jump discontinuities in the

velocity (or impedance) at these layers.

While the algorithm is particularly suited for data generated by a

number of reflecting surfaces, its validity for a single reflector is

demonstrated by applying the algorithm to Kirchhoff data for a quite general

surface.



A key feature of the approach of this paper is the repeated application

of high frequency asymptotic methods; both in obtaining the basic integral

equation describing the unknown velocity correction, and in the inversion of

this integral equation. Perhaps a noteworthy feature is that the underlying

integral equation is in the form of a generalized Fourier integral equation;

and the method for its (approximate) inversion may prove to be applicable to

a wide range of such problems.

4
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GLOSSARY

A amplitude of Green's function (B-i)

b(r.r') a basic amplitude (14)

" B inversion amplitude (10)

€I  velocity below reflector (30)

C(z) reference velocity (1)

D, E, F. G, H(Kz) various integrals; see Appendix A

f frequency (46)

g(x,z;t.w) Green's function for c(z) medium (2)

h(x) cylindrical surface (25)

I(r,r') delta-function-like integral (12)

K ray parameter (3)

ks (K , z )  In,(z)-K 2 (6)

n(z) = c(O)/c(z). the index of refraction (7)

r = (x,y,z) cartesian (2)

R reflection coefficient (26)

R. reflection coefficient (23)

s, s arclength variables (23)

S abbreviation; see (29)

*Us( ;w) observed scattered field (2)

observed scattered field (45)

v(x,z) velocity (1)

W the inversion operator (10)

x = (xy) horizontal cartesian (1)

z vertical cartesian (1)

a(xz) unknown perturbation in velocity (1)

iii
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P reflectivity function (23)

y abbreviation, see (26)

T
. abbreviationt see (30)

6 Dirak delta function; below (12)

* BB 573 band-limited distributions (18)

Ac jump in c (31)

Q.10~w~ cartesians for observation point at z =0 (2)

p signed distance from r' (20)

r(K. z) travel time (8)

9 phase function (14)

W circular frequency (2)

4 iv
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INRTlOJc'rlON

Carter and Frazer [19841, and Bleistein and Gray [19841 (henceforth BG),

present inversion algorithms which include the effect of a stratified

reference velocity, c(z). Those papers did not address the question of

obtaining accurate values of the reflection coefficient; this is the issue

treated here. Thus, in the language of Bleistein, Cohen and Hagin [1984],

(henceforth BCH), the earlier algorithms provided structural inversions, the

location of the sub-surface layers; whereas the present algorithm also

provides an accurate estimate of the reflectivity function, which depicts

the reflectors and provides an estimate of the reflection strengths across

the layers.

-0

Since we employ a perturbation assumption (the "Born Approximation'). the

constant reference speed inversion first described in Bleistein and Cohen

[1979a] and reviewed in BCH, is often not adequate at depth. Although

recursive use of the algorithm is possible and although the results can be

significantly enhanced by suitable pre- or post-processing (e.g., see Hagin

and Cohen [1984]), extension of the perturbation method to a stratified

reference profile is highly significant. It is far more likely that the

actual velocity function can be well approximated by a stratified reference

velocity than by a constant one, which in turn enhances the validity of the

perturbation assumption and the inversion results. See BG for further

discussion of this point.

The algorithm presented here has the same structure as the BG algorithm

and hence it can be expected to exhibit the same stability and economy. In

particular, we note that the processing times for this algorithm with depth-

-1-
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dependent background velocity will be comparable to those for a constant

background k-f algorithm. In addition, we shall show below that the

algorithm can be expected to be quite robust even when the "small"

perturbation assumption is violated.

A key feature of our approach to this problem is repeated application of

high frequency asymptotic methods to obtain an inversion formula valid in

the high frequency regime. Discussion of the motivation and justification

for such high frequency approximation may be found in BG and BCH. In

particular, we shall use a ray theoretic Green's function in formulating our

basic integral equation; equation (2) below. A similar approach was

presented in Clayton and Stolt [1981]. Moreover, since the resulting

integral equation cannot, in general, be inverted exactly, we also use

asymptotic methods for this task. This is carried out in the next section.

It is perhaps noteworthy that this integral equation can be viewed as a

generalized Fourier integral equation; and hence the method of inversion may

prove to be of interest outside the present -context. In the subsequent

section the resulting algorithm is verified (asymptotically) for a quite

general class of reflecting surfaces. A short section on computational

considerations is included. Finally, many of the detailed calculations are

carried out in Appendices A-E.

6-2 -
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HIGH FR DIIUCY DIVM1I1N

Here we describe the formalism for determination of an asymptotic

inversion operator. We employ the same wave equation model as described in

detail in BCH. If v is the velocity in the wave equation, we set

1 __ 1 [1 + ,.Z, ) x = (x,y) .(1)

2 -- • --
v (x,z) c (z) [ J

We will also use r = (xz) = (x,yz). Here c(z) is the known stratified

refert.Ace velocity, while a(r) is the desired perturbation correction to the

actual velocity. Furthermore, we retain the assumption of backscatter

("stacked*) data. In this case the basic integral equation for a(r) is (cf.

BCH, equation (8)):

a(r)

= f f f d3 r -r- ga (r;;W) , Q = (1'i) (2)
c (z)

where all unmarked integral signs are over (--,,). Here uS denotes the

backscattered field at the location (, ,) on the observation plane, z

0, and g (the "incident field') denotes the Green's function corresponding

to the stratification, c(z). In contrast to the constant background case, g

cannot be determined exactly, we must use the high frequency assumption.

Fortunately, this assumption is completely justified on the geophysical

exploration scale and has long been used to simplify processing formulas

even when it was possible to derive wide band analytic results (see BCH).

We use J. B. Keller's (1978] ray method formalism (see also Bleistein

[1984]), which is the multi-dimensional analogue of the WKB method to obtain

a parametric representation of g (see Appendix B):

-3-
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e iW(K, z)

4n k,(K, 0) k3(K, z ) E(K, z ) H(K, z)

Here, if we introduce the transverse distance,

(4)

then the parameter, K, in (3) is defined as a function of - and z by

the ray equation:

- I = (K,z) • (5)

Further, the quantity k (K,z) is given by
3

h,(K~z) = ln(z) -K , (K ( n (z)) (6)

where in turn, n, the index of refraction, is

€(O)
n(z) c ( (7)

The travel-time, r, is

1 G(K,z) G d (8)SC (O) '0 k3 (K, )'

and finally, the quantities E and H are likewise integrals involving n and

k . These integrals, as well as others that occur subsequently, are defined
0 3

in Appendix A. There, we also derive some needed relations involving these

quantities.

* -4-
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2 2
We shall not need the extension of k in (6) to the range n (z) < K

3

because our Fourier transforms are integrals over real wave numbers only.

Thus our task is to invert the integral equation,

2 i ,rc ( K, z)

2 a(r) e
us( w) 2 d.16d r z k (K,0) k (Kz ) E(K,z ) H(K'z) (9)

16t c (Z) 3

for a(r) in terms of the data, uS (w) . Again, the ray parameter

K is defined by (5).

Since the phase in (9) resembles that of a Fourier transform, we are

motivated to seek an asymptotic inversion operator W of the form:

W~us(t.w)](r') ~ dat d, B(r',L) e- us(q, ) ,(10)

where the amplitude B(r',t) and value K' must be determined. Condition (5)

above suggests that K' satisfies Ix' - U = K'E(K',z). In (10) we have

introduced primes to avoid confusion with the integration variables in (9).

Applying W to both sides of (9) and writing out the right side explicitly we

have:

5-
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a(r) a exp(2iw[-(K, z)-c(K', z') I
"' a w S(r, .j)

c (z) k3 (K,O)k(K, z)E(K,z)H(Kz)
' ( 11 )

= dr a(r) I(r,r'),r where

B(r 2iw[-(K, z) -(K z')]

I(rr') dw dw2 d a_W't) e (12)
167 c (z) k3 (K,O)k 3 (K,z)E(K,z)H(K,z)

Clearly, if (11) is to hold, then I(r,r') must represent the 3-dimensional

delta function, 5(r-r'). Hence our task is to find B = B(r',L) and K', so

that this is the case.

First a comment about the assumed form of B, i.e., B(r,,) where

r = (x,y,z) and I = (Q,i). In attempting to invert (9) for a(r') one would

generally expect B to also involve w. However, our experience with

canonical problems (e.g. c(z) = constant) suggests that B is independent of

w, and the work to follow confirms this.

In (11) and (12) we must acknowledge that in Geophysical applications Wo

is confined to the high frequency regime (e.g. see BCH for details). Hence

we may evaluate the asymptotic (large w) approximation to the integral in

(12) by stationary phase. For convenience we will think of w as the "large

parameter" in our asymptotics to follow. More precisely, it is important

'. -6-
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that the dimensionless parameter 2eL/c(O) be Olarge", where L is a typical

length scale of the problem. This is discussed more fully in BG. The

details of the stationary phase calculation are carried out in Appendix D.

The conclusions are:

1) K' = K. Geometrically, this stationarity condition says that for given r

and r', = s is chosen so that r, r' and ( s,0) lie on the same ray.
5 5

See Fig. 1. Since K' = K we will use only K hereafter. Hence, along

with (5), we now have

- KE(K,z') . (13)

2) The asymptotic approximation to (12) is as follows where E' = E(Kz'), H'

= H(Kz') and s symbolizes that the stationarity condition, K' K, is
5

to be applied:

I(r,r') dw W2 ib(r,r') •2w[r(K,z) -

16 7T f

where

b(rr') B wc(O) sgn(z'-z) (E'H'/EH)/(_~l is 2 /2 (14)

c (z) k, (K, 0) ks(Kz) (E - E')(H HIM

This expression for I(r,r') will simplify dramatically after we perform

the w integration. At this point we have

6 -7-
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b ( r,rr') ( 2jiw[(Kz) -"(K,z')]
I(r,r') 16 J do iwo e . (15)

16 7

If we denote x' =(KLz'), those familar with distributions will recognize

the above w integral as the distribution

n n d2 ( - f = d (16)

where 6 is the standard delta function. The distribution in (16) has the

sifting property that, for any differentiable f(r),

L f(') 6'('r-T 0 )dr = - f'(r 0) (17)

We will use this property shortly. We now have

b(r,r')
(rr') &B (-') (18)

32n

where the subscript B serves as a reminder that, in application of these

results the frequency w will actually be band-limited. Hence the o integral

in (15) is proper and, consequently, the resulting distribution 6' is in

fact a band-limited version (i.e., a regular function). These matters have

been dibcussed in Cohen and Bleistein [1979b], Bleistein [19841 and BCH

[19841. We will use the notation 6B and 6B for this reason, but proceed as

-8-



* if all the action in M~r,r' takes place as r -4 ri.

If one turns to b(r,r') defined by (14) and refers to the definitions in

Appendix A, it is easy to show that as r approaches r,

B k 3 (K,z')
b(r,r') 32 c(z')k (K, O)(z'-z)

* Using this in (18) gives

6B k 3(K,z')

I(r,r') -(19)

32c(z') k 3(MO) (z'-z)

Notice the singularity (z'-z) ,as z -4 z'. in this form of 1. This is

precisely the amount of singularity needed, when combined with &(-',to

*produce the required 3-dimensional distribution 8(r-r'). Recall that as

*z -4 z ', r -4 r' along the common ray and T = c(K.z) -4 (K. z') I ?. In

Appendix E the following is established, if

-9-



p _ =r - sgn (z - z') then

d = c2 (z') * d6(p) c(z') 6'(p)

Sim P - n(z')
z-4z' z-z' k (K.z')

We use these two results to rewrite the singular portion of (19). dropping

the subscript B for now,

6_(_-_) n(z') 6 '(p) (20)
z'-Z k (K, z") _

4I

We now verify that -6'(p)/p behaves like 2n b(r-r') by integrating it

against an arbitrary differentiable function f(r) over an s-sphere centered

at r'.

V' 27 e'

f B'(P) f f f ___dV f(r) (p f dO sin I do dp p f(r) P*-~ -pe in-d -p

I-0' Io 0

/ 2 27 I S{ u sin 0 d dp [p f(r)] 1'(P

0 0

= 27 (p f()]i = 27T f(r')
p =0

- 10 -
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Note, in the second step, the compensating change of limits in the e and p

integrals. In the last step we used the sifting property (17) of V(p). In

the sense of 3-dimensional distributions, we have established

6'(P)
=P 2nb(r-r')

Using this and (20) in (19), and returning to our 8B notation, we have at

last

B n c(O)
(rr') ~16k3 (K,0) B(rr)

For this to represent B (r-r') we are led to define amplitude B as

16 k5 (K, 0) 16 J1-K(1
B = c(0) 0) (21)

11his completes the definition of our inversion operator W in (10).

Applying W to (9) gives our inversion for a(r'),

16 r 1  -2iw'r(K,z2)
a(r- ) d dw - e uS(9,W) (22)

where K is defined implicitly by

* -11 -



zI-. ZI

- lJ K E(Kz') K

0 nz ( r) -K -n

As discussed in BCN, once we surrender knowledge of the low frequency

input information, we cannot obtain output trend information. It is to be

hoped that (by iteration if necessary) our c(z) reference velocity is an

adequate approximation of the trend to the depths of interest. What we can

obtain from band-limited information is a perturbation correction consistent

with the model of jumps across a series of interfaces. We determine the

approximate location of these interfaces as well as the approximate value of

the reflection coefficient at the interfaces. This information is summed up

in the reflectivity function,

P = Rj6B(Sj) (23)

th
where s is a (local) arclength variable measured normally from the jj "

interface and R is the normal reflection coefficient of that interface.J

Clearly, knowledge of 0 is equivalent to knowledge of reflector location and

the normal reflection coefficient (see equation (44) below). In turn the

latter allows direct computation of the jump in c across the reflector.

According to the theory developed in Cohen and Bleistein (1979b) and

reviewed in BCH, we can obtain 0 from a by inserting a factor of iw12c(z) in

(22) to obtain (after dropping the primes):

- 12 -
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~(r w(O c~) fd 1 fl-Kz dw w e iI(KzuS~,w) .(24)

-13 -



Verification of Algorithm

In order to verify the feasibility of the algorithm in (24), we first

obtain an expression for the Kirchhoff representation of data US. Such data

employs the high frequency assumption (by using the multi-dimensional WKB

representation of the incident, reflected and transmitted fields), but does

not make the Born approximation of small reflection coefficient. Thus, if

we can show asymptotic equality in (24) for such data, our algorithm is

likely to be quite robust for large contrast interfaces.

It remains to decide on the surfaces to use in computing the Kirchhoff

approximation to uS . For ease of presentation, we carry out our

calculations for the general cylindrical (i.e. y independent) surface:

z = h(x) . (25)

With a little more effort the verification can be done for a quite general

reflecting surface.

In Appendix C, we show that the back scatter at from (25) has the

Kirchhoff (high frequency) representation:

US(LO)~ 2io J j d2
! Il+h'(!) yRS e (26)

subject to

- KE (R,) , 1 h(Y) (27)

Here we have used bars to distinguish the spatial variable from the output

-14-



variables in the inversion formula (24) and have also introduced the

quantities:

[ ( - )h  
- k ]

= (28)

c(O) l+ '

S 12 (29)
167r k s K 0)k 3 K M )E(KLI(

and the (non-normal) reflection coefficient,

2 1 1 (30)
R= sgn(y) Y +-"0

T+Y 1  1  c

In turn, c1 (z) denotes the actual velocity below the reflector, M =),

that is,

c (z) = c(z) + Ac (31)

where Ac is not accounted for by the stratified reference profile c(z).

Obviously determining R is tantamount to determining Ac or cl(z).

Putting data, uS given by (26), into (24) leads to

-16 dt o ""d2 d=
nc(0)c(z) dw w J d di

(32)

" 4h '  RS e2i ° [ 'r(K,' ) - (K,z)]

Our goal is to show that the output of this expression does indeed represent

the reflecting surface.

.15
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We now carry out stationary phase in 1, j, , i (see Appendix D for

details) and obtain the stationarity conditions:

n= y (33)

1- = -sgn(h') K E(K,I) , (34)

*. and

x- - sgn(h') K E(K,z) (35)

These imply:

K ft n( Ih'1 (36)

k3 (i) n(z) (37)

where again i = h(l).

Geometrically, these conditions confirm the cylindrical nature of our

reflector and show that the output point (x,z) lies on a specular ray.

Furthermore (33-35) yield

. I 1 (38)1'= 7 C 1

which, in turn, imply that R reduces to the normal reflection coefficient,

-16-



C -c
1- (39)

n c

Completing the stationary phase analysis (again see Appendix D) we find

that

21
16Tn (z) 1 +h'

2  R S -K 2i[(K') - (,z)]

~(r c0) Jdw e .(40)

Here,

det (i) 1= [ (l+h'2)2 + n()hN [ 1+1h1 1.
MiK. z) E(K, V) H(K, z)H(i, -i) 4 (oz (.

(41)

However, the final integration in w, yields a delta function whose argument

can be transformed (using the relationships in Appendix A) to arclength

along rays:

f dw2i[( ) - B(Kz)] [r(i -

= nc(O) 6B G(C) - G(Kz)]

(42)

k3 (K., z)
nc(O) 6B z- ]

nc(0) 6 [s(z)-s()]
n(z) B

Here the last equality involving the ray arclength variable follows from

(A-8) and Appendix B. We may note that since z = 1 when the delta function

"acts," the stationarity conditions (33-35) imply that the output point

(z,z) coincides with the specular point (r,) = (_, h(!)). Furthermore,

* - 17-
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when z = T the second term in the large square brackets in (41) drops out

and hence using the definition (29), w' --e that

S1 S=1(43)

det(fij )I 16rn2 (l+h' )k,(KO)k 3 (K.Z)

Hence (40) reduces to

R n(z)
n 6[s(z)-s(z)]

• Fl+h 'Tks (i, v)

(44)

R 6[s(z)-s(!)]
n

Here, the last step follows from (37).

In summary, when the Kirchhoff data uS for a single reflecting surface

= h(I) is put into (24) and the computations are carried out

asymptotically, the inversion algorithm faithfully reproduces the surface.

Moreover, if a linear combination of such data, representing several such

surfaces, were inserted into (24) then, in principle, the algorithm could

reproduce an appropriate sum of responses as in (23). However, since the

background c(z) would presumably not be exact beneath the first reflector,

there would be some distortion introduced into the second and subsequent

reflectors. This issue was discussed in Hagin and Cohen, 1984.

-18-
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REUARIS CN DATA PROESSIG

The algorithm for the reflectivity function derived in the previous

sections is

I- - = KE(K,z)

Here Us is the backscatter time data observed on an areal array. For

actual data processing, it is convenient to 'fold' the unphysical negative

frequencies onto the positive ones by replacing w by -w on the interval (-

.0). At the same time, we introduce the physical frequency variable

(measured in Hz):

W
f - (46)

and explicitly acknowledge the bandlimiting by introducing F(f), a tapered

high pass filter. After these changes, we have:

S- 19-



p

foo

13(x~z) ,.c(O)c(z) fJd2 . 1 - [:i

co~

Tmi f' df f F(f) e-41Tif 'C(K*' z)

• dt US ( t , ) e 2 -ci f t0

Ix - - KE(k,z)

In practice, areal observations are often not available and instead only

a linear set of data is used. In this case we cannot hope to reconstruct a

three dimensional image of the subsurface and instead seek a two dimensional

slice, O(x,O,z) - P(x,z), consistent with the data available. Since the

data is now independent of q,

Us(t,t) = Us(t,t,O) * Us(tt) , (48)

and we may carry out an additional stationary phase calculation in I The

stationarity condition is

'1 =y (49)

and the analogue of (45) is found to be (see Appendix D for details):
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(rz) - 8 f d J7 7P(x, ~ d (1- ')E(K, z)

I'c(z)

dw e (50)

Jdt Us(t, ) e~

Ix- K E(K,z)

while (47) becomes:

P(xz) 327 f d 4(1-K 2 ) E(K,z)-C(Z) f
FO)O

(Re- Ir) 0df F(f) e- 4 nift ( K z)

(51)

C 2nift
* dt Us(t,t ) e

Kz, E K(K. 7)

The basic concepts of reducing (51) to a computer code are the same as

those discussed in BG for the algorithm presented there. Briefly, the t and

f integrals are performed routinely using an efficient FFT algorithm. The

main complication in (51) lies in the expressions E(K,z) and v(Kz), both

being integrals defined by (A-4) and (8) respectively. This is a bit subtle

in that the parameter K (see Appendix B) can be viewed as determining the

starting angle for a ray connecting the surface point (t,0) to data point

(x,z) in (51). Therefore, for a given offset Ix-fl, K is defined by the

implicit relation Is-fl = KE(K,z). In computation this issue is handled

-21-
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quite efficiently by two tables for evaluating r(Kz) and the amplitude

(involving E in (51)) as functions of ix-41 and z.

The computation time of the resulting algorithm, as pointed out in BO,

is comparable to a standard k-f migration algorithm with constant reference

speed.

-22-
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OmnCLus IONS

We have presented the derivation of an inversion algorithm for

backscattered ("stacked") seismic data. We made four major assumptions:

(i) the acoustic wave equation is an adequate model, (ii) stacked data has

amplitude information worth preserving fairly accurately, (iii) the actual

reflectivity coefficients can be adequately modeled as perturbations from a

continuous reference velocity which depends only on the depth variable, (iv)

the subsurface can be adequately modeled as a series of layers with jump

discontinuities in the velocity (or impedance) at these layers.

The last assumption is unavoidable given the nature of the high pass (on

the exploration scale) data collected in the field. The third assumption is

inherent in our approach although, as pointed out above, the algorithm can

be expected to be robust even when this assumption is violated. Also the

algorithm presented here represents a considerable improvement over earlier

algorithms, such as Cohen and Bleistein [1979a], which perturbed from a

constant reference velocity.

On the other hand, weakening of the first two assumptions seems eminently

feasible and we hope to apply the techniques expanded in this article to

both inversion of offset data (*inversion before stack") and to equations

which more accurately describe the wave propagation in the earth.

-23-
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It is already known (see BG) that algorithms with the structure of the

one presented here are numerically stable and are computationally efficient

relative to other seismic data processing algorithms.
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APPENDIX A

NOTATIONS AND IDENTITIES

We define

c (0)
n(z) -(- (A-1)

k, (K,z) 4a 2z) K (A-2)

and the integrals,

D(KLz) k (K,(L)dr , (A-3)

EMK z) =(A-4)
fks (Kp

F(KLz) =(A-5)

G(K~z) K. JZ(0)r(K,z) (A-6)

* -26-
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(Kz) 2()d (A-7)

s(Kz) = (A-8)

Similar quantities occur in the u-p theory, see Diebold and Stoffa

[1981]. Among the many relations which link these quantities, we cite below

those that are useful in carrying out the calculations presented in this

paper and its appendices.

First of all, from (A-2) it follows that

D + K2 E =G , (A-9)

E+KF H (A-10)

Next we cite the k and z partial derivatives of D, E and G which follow

respectively from use of

ak* Ok3  K (A-Il)

and the Fundamental Theorem of calculus:

DK  K E , Dz k k(K~z), (A-12)
K z
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EK K F . = (A-13)

2

GK KH , G = (A-14)
K kS

Finally, from (A-13) and (A-9) it follows that

(K E) K =H .(A-15)
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APPENDIX B

TIE STRATIFIED NEDIA GREEN4l'S FUNCfION.

Using Keller's [1978] "ray method", developed in the 1950's, we seek a

high frequency approximation,

g(x,z) ~ A(x,z) e -i(,Z , = (x) (B-i) 

which asymptotically satisfies the Helmholtz equation,

2

V g + g = -6(x-,) 6(z) , = ( ,TI) (B-2)

c (z)

To complete the specification of g, we insist that it behave like the free

space (i.e. constant c) Green's function as the field point, (x,z),

approaches the source point, ( ,O). This entails the conditions,

-r -4R/c(0) ,A -4 1 (B-3)
4uYR

as R -)0, where

2l a a$ 3

R= i--l +z (B-4)

We substitute (B-i) into (B-2) and separately equate the coefficients of

w and w to zero (this is the high frequency approximation) giving rise to

the eikonal equation,

a c(O)
k k = n (z) , k = c(o) V , n c (z (B-5)

and the transport equation,

- 29 -
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2 k VA + (V k) A 0 (B-6)

The former equation can be solved by the method of characteristics (see

Bleistein, 1984) which reduces the problem to the solution of a system of

* ordinary differential equations. The first of these equations are:

dx dz
-- =K , -=k ; k K 3 (kl,kz) , k=(K,k) (B-7)

dK dk3-- n n'(z) 
(B-8)do- 0 dco

which define the rays, a being the ray parameter. The source term in (B-2)

makes

x(O) = , z(O) = 0 (B-9)

a natural choice as initial data for (B-7). The data for k(O) consists of

an arbitrary unit vector (cf. (B-5), noting that n(0) = 1). To be specific

we choose

K(O) arbitrary , k3 (0) = -K (B-IO)

where we have introduced

K = k = k , (B-11)

From (B-10) and the fact that we are not considering turned rays here, it

follows that K = (k 1 , k2 ) can be viewed as the direction numbers of the rays

initiating from (i, i, 0).
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Using (B-6) and (B-7) we find

2

d - (B-12)

dA2 -A + (V k) A = 0 (B13)

which together with the data (B-3) completes the specification of g,

expressed in (B-i), in terms of a system of ordinary differential equations.

Proceeding to the analysis, we first note that by (B-8), K = K(O), so

henceforth we simply write K for this constant vector. Then the eikonal

equation (B-5) gives us

I4

k 3 (K,z) = . (B-14)

Then (B-7) yields

dx K
- (B-15)

or

__- .~K E(K,z) (B-16)

where E is defined by (A-4). Similarly, we find

1 (Kz) (B-17)

where C is defined by (A-6).
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If we introduce the ray Jacobian,

a(x, z)
= -s(B-18)

and use the fact that

d.= J V •k ,(B-19)

then the transport equation (B-6) can be recast as

A f= constant (B-20)

Thus

A li7 A 41n (B-21)
R-4 0

which by (B-3) implies that

Si 4nR (B-22)

We now indicate how to obtain the partial derivatives which are the

elements of J.

First we take the reciprocal of the second equation in (B-7) and

integrate to get

32
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z

Cr dz°

=J k(K, z,)
3

0

We think of z = z(K,a), differentiate this expression for a and use ac/ak. =

0 to obtain

az
- k.k F (B-23)

ak. 3

Similarly from (B-16), and using (B-23). one obtains

ax.
E ij , j = 1,2 (B-24)

Since 8x/ga and az/8, are given directly by (B-7), we are now able to form

J. A short calculation, involving the use of (A-10) yields

= k ER . (B-25)3

It is easy to show that as R -40 (equivalently c -40).
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2 - (B-26)
k:

In the same limit, (B-14) implies that

k-4k (K.0) = =e z/R (B-27)
3

so that

j 4R R (B-2 8)
~~3 k(K,O0)

Then (B-22) gives

A (B-29)

Since A and v~ depend only on K, we need only employ the magnitude of (B-16)

in the sequel:

K WEK. z) .(B-30)

Equation (B-14), (B-17), (B-29) and (B-30) are equivalent to equations (3-8)

of the text.

Finally, we relate our parameter a along the rays to the corresponding

arclength parameter. From (B-7) we have

dx dx dz dz
[Z-- 2 + k2 =n (B-31)

do do do do

and so
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ds = n(z) (B-32)

Using the second equation in (B-7) once more, we find

ds n (B-33)

3

or

a~( t) dt

S= (B-34)

0 k

f3 -
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APIMUDIX C

KIEROEOlP DATA

The derivation presented in Cohen and Bleistein [1983] applies here with

the constant c Green's function used there being replaced with the c(z)

Green's function derived in Appendix B. Thus, equation (8) of that paper

may be recast in our present notation as

a
I

anuS(z'w) ~JIdS R-g(x,z:,;w) (C-i)

s

with g defined by equations (3-6) and the reflection coefficient R being

defined by

Y -Ti
R (C-2)

+

where

V=f"V1  , yx=sgn(y) Y + 
1 
2 (C-3)

and I is the upward normal to S. Here c, is defined by (31).

Since g has the form given in (B-i)

~ 2i0 x ,(-4)

subject to
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K KE(K.z) . (C-5)

Hence (B-i). with the definition of y given in (C-3) and that of S given by

(29), yields

8 2 2iom
- - 2i wyS• . (C-6)

Thus (26) follows from the form, (25), of the surface. It remains to

establish the detailed calculation of y given in (28).

We have:

VG (z)

(C-7)
1 (h'O,-l) (G[A 2 G 8!, G 2K +G J

K a K Kz zfl+(h')' W

1 (h',O,-1) [hG 2K G 2K- 1
=c( • h ax K z •

From the constraint (C-5) we compute

KE
aK 4 x- MK Kc-8)

ax- - -" , z (K-E)

and then (28) follows from (C-7), (C-8) and the results of Appendix A.
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APPENDIX D

STATIONARY PEASE CALCULATIONS

Assuming that the phase, #(x), has a single simple stationary point Xst

a |

V§(x)=0 , det _x~ex. (xs 0 , (D-1)

1.1

the integral,

I(M) e f ei f ( x ) A(x)dn. , )[ >> 1 (D-2)

can be evaluated asymptotically by the multidimensional stationary phase

* formula, (see Bleistein [1984] or Bleistein and Handelsman [1975]).

n/a

I(X) " ; [/z A exp(iXI + i-I sgn X sig (D-3)TrT 44 det(iJij)1 4 ij

Here As I s , and ('ij), denote respectively the amplitude A, the phase V

and the Hessian matrix, (82#/Dxiaxj) evaluated at the stationary point,

x = *S . Further, sig ( 1 ij) denotes the signature of (ij), i.e. the number

of positive eigenvalues minus the number of negative eigenvalues.

If there were several stationary points, (D-3) would be replaced by a slm

over the contributions from these several points. If the Hessian matrix

vanished, (D-3) would have to be replaced by a more general result.

0
However, only (D-3) is required here.

In the second application of (D-S) to follow, n = 4. Although the

evaluation of the signature of a symbolic 4 x 4 matrix can be tedious or

* -38-
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impossible, our task is considerably simplified by the fact that our Hessian

matrices have the special form,

a 0 v 0"-
|= 0 0 a (D-4)

v 0 Y 0 "
0 u 0 6

whence

det I (ay- vz)(Pb - u2) . (D-S)

To evaluate the signature, we need to determine the roots. a. of the

eigenvalue equation,

det -l) =0 , (D-6)

where I is the identity matrix. From (D-5), we find at once:

det(f - a) = a2- (a+Y) a + ay - v J s - (p+6) a + 08- u2 . (D-7)

Thus,

v 2> ay u 2> 06 => Sig (|j) 0 .(D-a)

and similarly,

> u < 06 => sig Q ±2 (D-9)

etc.

We now turn to the specific stationary phase calculations in the text.

We shall freely use the results of Appendix A without explicit citation.
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First we examine the phase in (12):

=G(K,z) - G(K',z') =c(O)[?r(K~z)-(K',z')] (D-10)

where G, K, and K' are defined by:

G(Lz) JFrk dt

0

- KE(K9 z) E KE ,(D-11)

I! =K'E(K',z') a K'E' .(D-12)

Variables x, z. x', and z' Az are viewed as fixed for this calculation.

Implicit differentiation of (D-11) with respect to yields (after

appealing to Appendix A),

so

8Kxi aK' =

r1W

Using these results we have
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81 ~ a r K K' x.-~.~

* K -t I 1 1 (D-13)

To obtain our stationarity condition we set 11 0 and have

Ef 1' 1 .2

Using this result with (D-11) and (D-12) leads to

K - K' (D-1 4)

* This condition says that the critical value of is such that the points

r (x,z) and r' (x',z') lie on the same ray emanating from ( ,O). See

* Fig. 1 above. We sybolically denote this stationarity choice of by ~

We now proceed to calculate the Hessian matrix ('ij) . Differentiating

*expression (D-13) with respect to leads to

- __ 6 (~-L-k k~ ----ij a -8 i j E B] i Ln E J

ij iki?

-. We have again appealed to results in Appendix A. It now follows that

I4



1 1# -kzk#¥

k k k¥det (li.) = det I

k~kz? e - kz¥

1 2 2

2 
K2

= - a y = c (a - K y)

EI E..E
1 _ F.EJ

E- E H' - H

Note det(#ij) > 0 when z i& z' sinco E and H are z integrals with positive

integrands (see Appendix A). Similarly, in expanding det(Iij - 01) one

finds eigenvalues

El - E H - H
Ef' l2

and therefore concludes that sig (tij) = 2 sgn (z'-z). Note that

i -- sis(#i) i ssn (z'-z) = i sgn (z-z)
e 2 1

Using these results in (D-3) leads to the following asymptotic (large w)

approximation to the integral in (12):
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B~.)2iw[,r(K~z) -(~z)

in c(0) sgn (z'-z) (EE'HH') /

((E -E') (H -H'))]1

We now turn to the stationary phase evaluation of (32) in the four

variables 1. 71~,v. Here the phase is

9=G(Li) - G(1, z) = c(O) [r(K,!) - (K z)] (D-15)

subject to the usual constraints

K! - E(KD z) 1- 1 KE(Vi) (D-16)

T1his stationary phase evaluation is somewhat more difficult because I

depends on 1:

I h (1) ,(D-17)

Implicit differentiation in 1, of the second equation in (D-16) leads to

h1 8- 8)

so

ai = .~-(D-19)

where we use notations like

-43-
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4 = E(K, I) (D-20)

for quantities which depend on K and 1. The remaining partials of K and K

are simpler since 1 does not depend on y, , or y, and since z is a

completely independent variable:

aK y-n aK t-i (D-21)

a Y El at KER

These results allow one to compute:

LK' + h'(i)

- *h' +n()

(D-22)

+ k h'

S - , t-i t-x n-Y q-y

E E E E

The Y. ij derivatives give rise to the simple stationarity conditions:

Y = n -- Y (D-23)

Hence the constraints (D-16) reduce to

Ix - = KE(K,z) ! i - = KE(K,i) (D-24)

which can be rewritten as

x- =KE , I sgn(x-t) (D-25)

and

I - 44 -
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= liE , i * gn~i~) .(D-26)

These results allow us to simplify the remaining partials in (D-22) to

A ~K + k h' (D-27)x 3

and

+ pK (D-28)

For stationarity, we must have

p i= sgn(h') (D-29)

and then also

K=K h' .(D-30)

The latter equality allows us to determine that

n()k3i (D-31)

Finally (D-29) allows us to restate (D-25), (D-26) as

x - =- K(Kz) sgn(h') (D-32)

and

x K -E(KI) sgn(h') (D-33)

At the stationary point, the phase is
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fI G(L) G(K,z) (D-3 4)

Further, a number of terms of the Hessian matrix vanish because of (D-23)

leaving us with

I- 0 IE 0

= 0 10

13( -3 5)

FE 0 0

Y11 Till
5

which has the form (D-4) with

v ay (D-36)

and

u py (D-.37)
Y'1 37 IT

We observe that (D-19) and the stationarity conditions yield

8Kh j h' I -. ~ (l+h'1 ) , j! -sgn(h') (D-3 8)
Is H H H

and similarly

*~O (D-39) 1 HLz

T"hese facts allow to evaluate (D-36) as
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v -ay (h+ n~~" 1 _ 1(D-40)
H(i.Z)H(, Z) FI(T H(Lz) H(K, z)J

and (D-37) as

u 1 >0 . (D-41)
E(k, z)E(K,Z)

Thus, "near' the reflector, z I , both v1 > ay. u 2 > 08 hold and from

(D-8) we have sig (fij) = 0. Finally, applying all these results to the

integral given by (32) leads to the approximation (40).
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APPEDIX E

A I-DIMIINAL DISTRIBUTION

In (19) we were lead to the singular form

' '(T-T 1) 1 d"
Z-Z z-z' dr

This requires some careful interpretation since as z -4z', T -4T' and hence

the form is very singular at the point at which the "action' takes place.

We here first show that, with

P - sgn (z-z') (E-2)

we have

li- k n(z') (E-3)
z-Z' k ([,z')

z 4z'

lim -- P lim = C(z') (E-4)

z -4Z 4-'

To establish (E-3), we appeal to (B-16) and note that since r and r'

are on the same ray:
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= (x, z) - (x',z') = f-Z

Hence as z -4z':

r II '/
TZ = t [f ,([.K + (z-z')-

(E-5)

n lz'l-K k (K.l z ) 2.

Using this result and (E-2) establishes (E-3).

To obtain (E-4) we use (A-6) to get

Z-- C €(0) zz'T k,( .:-

n (W')
c ( k (K.,z' as z -- z'

Using this together with (E-3) establishes (E-4).
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I Applying (E-4) we hay.

6[p/c(Z')] =C(Z') 8(p)

d dpd d7_8T_,)= L_6( _V,) = C(z,) __ [C(Z,)b(p)Cdvdp~ dp

(E-6)

C 2(Z,) -L6(p) C2(z,)b,(p)
dp

This result, (E-6), and (E-3) are combined in the main text to further

interpret the singular expression (E-1).
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Figure 1: Two rays (solid lines) connecting an arbitrary surface point

to r and r'; and the single ray emanating from point ts
determined by stationary phase.
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ABSTRACT

The purpose of this work is to present an inversion algorithm for

backscattered ('stacked") seismic data which will reconstruct the velocity

profile in realistic earth conditions. The basic approach follows that of

the original Cohen and Bleistein paper [1979a] in that high frequency

asymptotics and perturbation methods are used. However, in the original

paper the perturbation was relative to a constant reference speed, whereas

the current work uses a reference speed which may vary with depth. This

greatly enhances the validity of the perturbation assumption and hence the

inversion results. On the other hand, the new algorithm enjoys the same

economies and stability properties of the original algorithm, making it very

competitive with current migration schemes.

Four major assumptions are made: (i) the acoustic wave equation is an

adequate model, (ii) stacked data has amplitude information worth preserving

fairly accurately, (iii) the actual reflectivity coefficients can be

adequately modeled as perturbations from a continuous reference velocity

which depends only on the depth variable, and (iv) the subsurface can be

adequately modeled as a series of layers with jump discontinuities in the

velocity (or impedance) at these layers.

While the algorithm is particularly suited for data generated by a

number of reflecting surfaces, its validity for a single reflector is

demonstrated by applying the algorithm to Kirchhoff data for a quite general

surface.

.4 A key feature of the approach of this paper is the repeated application

of high frequency asymptotic methods; both in obtaining the basic integral

equation describing the unknown velocity correction, and in the inversion of

this integral equation. Perhaps a noteworthy feature is that the underlying

integral equation is in the form of a generalized Fourier integral equation;

and the method for its (approximate) inversion may prove to be applicable to

a wide range of such problems.
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